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The enzyme p-hydroxyphenylpyruvate hydroxylase classified as a monooxygenase2 catalyzes
the conversion of p-hydroxyphenylpyruvic acid (14) 1nto homogentisic acid (*2), 1n which atomos-
pheric oxygen 1s 1ncorporated 1nto both the hydroxy and the carboxyl groups of3/3 In order to
account for thi1s experimental observation, Lindblad and his cowor*ker's3’4 have postulated a
mechanism 1nvolving nucleophiiic attack by the hydroperoxy group of the intermediate hydroper-
ox1de3,on the a-ketoacid moiety via a cyclic perox1dei]ead1ng to a quinol 1ntermed1ate45’,
which then undergoes migration of the side chain to the ortho position to y1e1d£ by a
mechanism analogous to that of NIH sh1ft7 (Scheme 1). The original 1dea of this mechanism was
suggested by Goodwin and w1tkop.8 After unsuccessful attempts to synthesize the qu1n0145’,
they have shown that alkali treatment of 4-methoxycarbonylmethyl-4-acetoxy-2,5-cyclohexadienone
gave'g‘wmch was detected on paper chromatogram. This communication describes a nonenzymic

pathway for the conversion ofimto},wa the qu1nol}’
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The dye-sensitized photv.)oxygena\twn9 ofJ,(0.0]M) n 1ts enol form” resulted 1n the rapid
consumption of an equimolar amount of oxygen with the formation of p-hydroxybenzaldehyde (,9) mn
70% y1eld along with oxalic acid  However, whenJ/ (0.01M) was photooxidized 1n phosphate buffer

at pH 7.0 1n which the keto form was preponderant (keto-enol ratio 8 2),]3 three products,i,
14

6
52

and p-hydroxyphenylacetic acid (L) were 1solated 1n 18, 12 and 15% yield, respectively The

EtOH nyjol
max 220 nm {log ¢ 4 18), Vmax

3320, 1705, 1670 and 1610 cm_], NMR (acetone-ds) &7 05 (2H, d, J=10Hz), 6 30(1H, s, OH), 6 07

qu1no1_'5j5 was recrystallized from ethyl acetate, mp. 104°C, X

(2H, d, J=10Hz) and 2 75 (2H, s) Sodium borohydride reduction ofigaveim 72% yreld
Treatment ofimth aqueous alkal1 (pH 12) at room temperature under nitrogen gave homogentisic

acid Q) n 80% yield At below pH 2, quinol ireadﬂy underwent cyclization to yi1eld a lactone

15 ° EtOH nujol -1
,8‘3, n 85% yield, mp 109°C, Anax 218 nm (log ¢ 4 12), Vmax 3400, 1780, 1670 and 1605 cm

NMR (acetone-d6) & 6 85 (Th, dd, J=10 and 0 8Hz), 6 0O(1H, d, J=10Hz), 5 40 (1H, br s, OH),
4 85 (14, td, X of ABX, J =5Hz, J=0 8Hz), 3 05 (1H, dd, J

=16Hz, J,,=5Hz), 2 90 (2H, s)

AB AX
=5Hz) The photooxygenation of’l)s inhibited by the addition
)16 17

AXYBx

and 2 68 (1H, dd, J,,=16Hz, J

AB BX

of known singlet oxygen quenchers, 1,4-diazabicyclo[2.2 2]Joctane (DABCO and sodium azide,

1ndicating that the reaction may be a singlet oxygen-mediated reaction 18
The following control experiments have shown that 7 cannot be a precursor ofj,m the
photooxygenation ofL (1) The photooxygenation oflat sl1ghtly acidic pH (acetate buffer, pH
6 0) proceeded smoothly to g1veim 12% yi1eld, whereas under the same condi t1ons"7’was only
sluggishly oxidized (11} In the photooxygenation ofLaddﬂ:wn of catalase to the reaction

0 However, under

system 1nhibited the formation of_Lbut had no effect on the yield of{?f2
alkaline conditions (phosphate buffer, pH 8.5) the photooxygenation ofl proceeded at an
appreciable rate to give im 65% y1eld Under similar conditions, phloretic acid (2) gave the

21

known lactone 10 (22%) and a quinol 11]5 (50%), mp 112°C  Treatment of 11 with N,N'-
-t i -t~

dicyclohexylcarbodiimide gave 10 1n 90% yield (Scheme 2)  The quinols presumably result from

the reaction of the 1nitially formed hydroperoxide E with water 22

Unlike 7 and 9 which give 5 and 11 respectively, 1 does not yield the corresponding
- -2~ - - 2
quinol _13 in detectable amounts It only gwesiupon photooxygenation within a pH range of
6 0-9 0 which suggests that the hydroperoxy group ofireacts much faster with the keto group
of the side chain than with the solvent water
In summary, the reaction sequence reported here indicates thatl 1n 1ts keto form can

react with singlet oxygen to y1e1di most probably via a cyclic peroxide i, and that 5 1s 1ndeed
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an intermediate 1n the nonenzymic conversion of 1 1nto 2 23

Furthermore, the photosensitized
oxygenation in aqueous systems provide a simple alternative method for the synthesis of 4-sub-
stituted 4-hydroxy-2,5-cyclohexadienones from phenolic acids 26 Further work on the possible

participation of 5 as an intermediate 1n the enzymic reaction 1s currently 1n progress 27
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