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The enzyme R-hydroxyphenylpyruvate hydroxylase classlfled as a monooxygenase2 catalyzes 

the conversion of p-hydroxyphenylpyruvlc acid (A) into homogentlslc acid (?I), ln which atomos- 

phenc oxygen 1s incorporated into both the hydroxy and the carboxyl groups oft3 In order to 

account for this expenmental observation, Lindblad and his coworkers 334 have postulated a 

mechanism lnvolvlng nucleophlllc attack by the hydroperoxy group of the lntermedlate hydroper- 

oxide3+on the a-ketoacld moiety via a cyclic peroxlde$leadlng to a qulnol intermediate& 

which then undergoes mlgratlon of the side chain to the ortho posltlon to yleldLby a 

mechanism analogous to that of NIH shift7 (Scheme 1). The original idea of this mechanism was 

suggested by Goodwin and Wltkop. 8 After unsuccessful attempts to synthesize the quinol& 

they have shown that alkali treatment of 4-methoxycarbonylmethyl-4-acetoxy-2,5-cyclohexadlenone 

gave&whlch was detected on Paper chromatogram. This comnunlcatlon describes a nonenzymlc 

pathway for the conversion ofAlntoAvla the qulnola 
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The dye-sensitized photooxygenation' ofL(O.OlM) in its enol form 11 resulted in the rapid 

COnSUIIYJtlOn of an equimolar amount of oxygen with the formation of e-hydroxybenzaldehyde (ft, in 

70% yield along with oxalic acid However, whenA (O.OlM) was photooxidized in phosphate buffer 

at PH 7.0 in which the keto form was preponderant (keto-enol ratio 8 2),13 three products,S,$ 

and e-hydroxyphenylacetic acid (2 were isolated in 18, 12 and 15% yield, respectively l4 The 

quinol_ZT5 was recrystallized from ethyl acetate, mp. 104"C, ~~~~ EtoH 220 nm (log E 4 18), +!Jxo' 

3320, 1705, 1670 and 1610 cm -', NMR (acetone-d6) 6 7 05 (2H, d, J=lOHz), 6 30(1H, s, OH), 6 07 

(2H, d, J=lOHz) and 2 75 (2H, s) Sodium borohydnde reduction ofAgave2 in 72% yield 

Treatment ofSwlth aqueous alkali (pH 12) at room temperature under nitrogen gave homogentlslc 

acid & in 80% yield At below pH 2, qulnol Lreadily underwent cycllzation to yield a lactone 

i5 in 85% yield, mp 109"C, ~~~~~ 218 nm (log E 4 12), v;$" 3400, 1780, 1670 and 1605 cm-', 

NMR (acetone-d6) 6 6 85 (lh, dd, J=lO and 0 8Hz), 6 OO(lH, d, J=lOHz), 5 40 (lH, br s, OH), 

4 85 (lH, td, X of ABX, JAx =J ,.,x =5Hz, J=O 8Hz), 3 05 (lH, dd, JAB=16Hz, JAX=5Hz), 2 90 (2H, s) 

and 2 68 (lH, dd, JA8=16Hz, JBX=5Hz) The photooxygenation of&is InhibIted by the addition 

of known singlet oxygen quenchers, 1,4-dlazablcyclo[2.2 2]octane (OASCO)'6 and sodjum azlde,17 

lnd~catlng that the reaction may be a singlet oxygen-mediated reaction 
18 

The following control experiments have shown that Lcannot be a precursor ofAln the 

photooxygenation ofA (I) The photooxygenation ofAat slightly acidic pH (acetate buffer, pH 

6 0) proceeded smoothly to givegin 12% yield, whereas under the same condltlonsLwas only 

sluggishly oxidized (ii) In the photooxygenatlon ofAaddltlon of catalase to the reaction 

system inhibited the formation of Lbbut had no effect on the yield of 5 2o However, under 

alkaline conditions (phosphate buffer, pH 8.5) the photooxygenation of,Lproceeded at an 

appreciable rate to give 5+ln 65% yield Under similar conditions, phloretlc acid (2) gave the 

known lactone lO_2' (22%) and a quinol _ll+15 (50%), mp 112°C Treatment of ll_ with N,N'- 

dlcyclohexylcarbodilmide gave E in 90% yield (Scheme 2) The quinols presumably result from 

the reaction of the initially formed hydroperoxlde 2 with water 22 

UnllkeLandzwhlch giveLand VJ respectlvely,_ldoes not yield the corresponding 

quinol l3_ in detectable amounts It only givesAupon photooxygenation within a pH range of 

6 O-9 0 which suggests that the hydroperoxy group ofAreacts much faster with the keto group 

of the side chain than with the solvent water 

In summary, the reaction sequence reported here indicates thatL in Its keto form can 

react with singlet oxygen to yleldAmost probably via a cyclic peroxidez, and that 5 1s indeed 
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an lntermedlate in the nonenzymlc conversion of 1 into 2 23 Furthermore, the photosensitized 

oxygenation In aqueous systems provide a simple alternatlve method for the synthesis of 4-sub- 

stltuted 4-hydroxy-2,5-cyclohexadlenones from phenollc acids 26 Further work on the possible 

partlclpatlon of 5 as an lntermedlate ln the enzymlc reaction 1s currently In progress 27 
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